论文标题
部分可观测时空混沌系统的无模型预测
Proposal-Free Temporal Action Detection via Global Segmentation Mask Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Existing temporal action detection (TAD) methods rely on generating an overwhelmingly large number of proposals per video. This leads to complex model designs due to proposal generation and/or per-proposal action instance evaluation and the resultant high computational cost. In this work, for the first time, we propose a proposal-free Temporal Action detection model with Global Segmentation mask (TAGS). Our core idea is to learn a global segmentation mask of each action instance jointly at the full video length. The TAGS model differs significantly from the conventional proposal-based methods by focusing on global temporal representation learning to directly detect local start and end points of action instances without proposals. Further, by modeling TAD holistically rather than locally at the individual proposal level, TAGS needs a much simpler model architecture with lower computational cost. Extensive experiments show that despite its simpler design, TAGS outperforms existing TAD methods, achieving new state-of-the-art performance on two benchmarks. Importantly, it is ~ 20x faster to train and ~1.6x more efficient for inference. Our PyTorch implementation of TAGS is available at https://github.com/sauradip/TAGS .