论文标题

警察和强盗游戏的粗糙几何形状

Coarse geometry of the Cops and robber game

论文作者

Lee, Jonathan, Martínez-Pedroza, Eduardo, Rodríguez-Quinche, Juan Felipe

论文摘要

我们在图表上介绍了警察和强盗游戏的两个变体。这些游戏在$ \ mathbb {z} _+\ cup \ {\ infty \} $中产生两个不变性,对于任何连接的图形$γ$,{弱cop $ \ mathsf {wcop}(wcop}(γ)$}和{强Cop $ $ \ m \ m scop {scop {scop} $}。这些不变的人满足了$ \ mathsf {scop}(γ)\ leq \ mathsf {wcop}(γ)$。任何有限或树的图形都具有强大的COP第一。这些新的不变剂保存在图形的小局部扰动下,具体来说,弱和强的COP数字都是连接图的准iSmotem ibotic不变性。更笼统地,我们证明,如果$δ$是$γ$的准重取,那么$ \ mathsf {wcop}(δ)\ leq \ mathsf {wcop}(wcop}(γ)$和$ \ mathsf {scop}(scop}(Δ)(δ)我们展示了任意弱的COP数字的图示例(分别为强COP数)。我们证明双曲线图具有强大的COP第一。我们还证明,单端的不符合局部的顶点传播图具有无限的COP数量。我们提出了一个问题,即是否存在有限的弱(分别强)COP数字的连接的顶点及其图形。

We introduce two variations of the cops and robber game on graphs. These games yield two invariants in $\mathbb{Z}_+\cup\{\infty\}$ for any connected graph $Γ$, the {weak cop number $\mathsf{wcop}(Γ)$} and the {strong cop number $\mathsf{scop}(Γ)$}. These invariants satisfy that $\mathsf{scop}(Γ)\leq\mathsf{wcop}(Γ)$. Any graph that is finite or a tree has strong cop number one. These new invariants are preserved under small local perturbations of the graph, specifically, both the weak and strong cop numbers are quasi-isometric invariants of connected graphs. More generally, we prove that if $Δ$ is a quasi-retract of $Γ$ then $\mathsf{wcop}(Δ)\leq\mathsf{wcop}(Γ)$ and $\mathsf{scop}(Δ)\leq\mathsf{scop}(Γ)$. We exhibit families of examples of graphs with arbitrary weak cop number (resp. strong cop number). We prove that hyperbolic graphs have strong cop number one. We also prove that one-ended non-amenable locally-finite vertex-transitive graphs have infinite weak cop number. We raise the question of whether there exists a connected vertex transitive graph with finite weak (resp. strong) cop number different than one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源