论文标题
量子大都市求解器:量子步行方法的优化问题
Quantum Metropolis Solver: A Quantum Walks Approach to Optimization Problems
论文作者
论文摘要
优化问题的有效解决是当今行业的关键问题之一。此任务主要依赖于具有可扩展性问题和处理限制的经典算法。量子计算已经出现以挑战这些类型的问题。在本文中,我们专注于基于量子步行的大都市杂货量子算法。我们使用此算法来构建一个称为Quantum Metropolis求解器(QMS)的量子软件工具。我们验证了具有N-Queen问题的QM,以在一个示例中显示出潜在的量子优势,该示例很容易被外推到人工智能域。我们进行不同的模拟以验证QMS的性能及其配置。
The efficient resolution of optimization problems is one of the key issues in today's industry. This task relies mainly on classical algorithms that present scalability problems and processing limitations. Quantum computing has emerged to challenge these types of problems. In this paper, we focus on the Metropolis-Hastings quantum algorithm that is based on quantum walks. We use this algorithm to build a quantum software tool called Quantum Metropolis Solver (QMS). We validate QMS with the N-Queen problem to show a potential quantum advantage in an example that can be easily extrapolated to an Artificial Intelligence domain. We carry out different simulations to validate the performance of QMS and its configuration.