论文标题
傅里叶 - 玻璃体空间中的分数Navier-Stokes-Coriolis系统的固定解决方案
Stationary solutions for the fractional Navier-Stokes-Coriolis system in Fourier-Besov spaces
论文作者
论文摘要
在这项工作中,我们证明了在关键的傅立叶河畔空间中存在三维分数Navier-Stokes-coriolis的固定溶液。我们首先要处理非平稳的分数Navier-Stokes-Coriolis,在此框架中,我们获得了固定解决方案的存在。我们还指出,这些非平稳解决方案的一种稳定性,该溶液适用于固定案例,可以得出结论,在适当的条件下,当时间到达无限时,非平稳溶液会汇聚到固定溶液。最后,我们建立了外力和科里奥利参数之间的关系,以便为固定系统获得独特的解决方案。
In this work we prove the existence of stationary solutions for the tridimensional fractional Navier-Stokes- Coriolis in critical Fourier-Besov spaces. We first deal with the non-stationary fractional Navier-Stokes-Coriolis and in this framework we get the existence of stationary solutions. Also we state a kind of stability of these non-stationary solutions which applied to the stationary case permits to conclude that, under suitable conditions, non-stationary solutions converge to the stationary ones when the time goes to infinity. Finally we establish a relation between the external force and the Coriolis parameter in order to get a unique solution for the stationary system.