论文标题
超对称的伽利亚电动力学
Supersymmetric Galilean Electrodynamics
论文作者
论文摘要
在2+1个维度中,我们提出了一个可恢复的非线性Sigma模型动作,该动作描述了$ \ Mathcal {n} = 2 $ supersymmetrictric的galilean电动力学。我们首先是从相对论的Abelian $ \ Mathcal {n} = 1 $ supersymmetric QED中获得的最简单模型开始,并在3+1维中进行了超对称性QED,并直接研究了其在非相关性超空间中的重新规范化属性。尽管存在由非相关动力学的因果结构引起的非命级定理,但我们发现该理论是不可降低的。无限的无量纲,超对称性和量规不变术语结合在分析函数中,在量子水平上产生。然后,通过将理论推广到非线性sigma模型来恢复性差异性,在这种非线性sigma模型中,仪表和物质之间通常的最小耦合是由无限的许多边缘耦合互补的,这是由无尺寸尺度标量及其费米金超级球员驱动的。超符号的不变性保留在固定点的非平凡的共形歧管的对应关系中,该理论是衡量不变和相互作用的。
In 2+1 dimensions, we propose a renormalizable non-linear sigma model action which describes the $\mathcal{N}=2$ supersymmetric generalization of Galilean Electrodynamics. We first start with the simplest model obtained by null reduction of the relativistic Abelian $\mathcal{N}=1$ supersymmetric QED in 3+1 dimensions and study its renormalization properties directly in non-relativistic superspace. Despite the existence of a non-renormalization theorem induced by the causal structure of the non-relativistic dynamics, we find that the theory is non-renormalizable. Infinite dimensionless, supersymmetric and gauge-invariant terms, which combine into an analytic function, are generated at quantum level. Renormalizability is then restored by generalizing the theory to a non-linear sigma model where the usual minimal coupling between gauge and matter is complemented by infinitely many marginal couplings driven by a dimensionless gauge scalar and its fermionic superpartner. Superconformal invariance is preserved in correspondence of a non-trivial conformal manifold of fixed points where the theory is gauge-invariant and interacting.