论文标题
Robustanalog:通过多任务RL快速变化 - 感知模拟电路设计
RobustAnalog: Fast Variation-Aware Analog Circuit Design Via Multi-task RL
论文作者
论文摘要
模拟/混合信号电路设计是整个芯片设计过程中最复杂,最耗时的阶段之一。由于芯片制造的各种过程,电压和温度(PVT)变化,模拟电路不可避免地会遭受性能降解。尽管在典型条件下自动化模拟电路设计有很多工作,但在探索在真实且不可预测的硅变化下探索可靠设计的研究有限。针对变化的自动模拟设计需要过度的计算和时间成本。为了应对挑战,我们提出了RobustanAlog,这是一个强大的电路设计框架,涉及优化过程中的变化信息。具体而言,不同变化下的电路优化被视为一组任务。任务之间的相似之处是杠杆作用,并且可以缓解竞争以实现样本有效的多任务培训。此外,RobustanAlog根据每次迭代中当前的性能来修剪任务空间,从而进一步降低模拟成本。这样,鲁棒可以迅速产生一组满足各种变化范围内不同约束(例如增益,带宽,噪声...)的电路参数。我们将Robustanalog与贝叶斯优化,进化算法和深层确定性策略梯度(DDPG)进行了比较,并证明Robustanalog可以将所需的优化时间显着减少14-30次。因此,我们的研究提供了一种可行的方法来处理各种实际硅条件。
Analog/mixed-signal circuit design is one of the most complex and time-consuming stages in the whole chip design process. Due to various process, voltage, and temperature (PVT) variations from chip manufacturing, analog circuits inevitably suffer from performance degradation. Although there has been plenty of work on automating analog circuit design under the typical condition, limited research has been done on exploring robust designs under real and unpredictable silicon variations. Automatic analog design against variations requires prohibitive computation and time costs. To address the challenge, we present RobustAnalog, a robust circuit design framework that involves the variation information in the optimization process. Specifically, circuit optimizations under different variations are considered as a set of tasks. Similarities among tasks are leveraged and competitions are alleviated to realize a sample-efficient multi-task training. Moreover, RobustAnalog prunes the task space according to the current performance in each iteration, leading to a further simulation cost reduction. In this way, RobustAnalog can rapidly produce a set of circuit parameters that satisfies diverse constraints (e.g. gain, bandwidth, noise...) across variations. We compare RobustAnalog with Bayesian optimization, Evolutionary algorithm, and Deep Deterministic Policy Gradient (DDPG) and demonstrate that RobustAnalog can significantly reduce required optimization time by 14-30 times. Therefore, our study provides a feasible method to handle various real silicon conditions.