论文标题

PYMAF-X:从单眼图像中迈向良好的全身模型回归

PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images

论文作者

Zhang, Hongwen, Tian, Yating, Zhang, Yuxiang, Li, Mengcheng, An, Liang, Sun, Zhenan, Liu, Yebin

论文摘要

我们提出了PYMAF-X,这是一种基于回归的方法,用于从单眼图像中恢复参数全身模型。此任务非常具有挑战性,因为较小的参数偏差可能会导致估计的网格和输入图像之间的明显未对准。此外,当将部分特定的估计集成到全身模型中时,现有的解决方案倾向于降解对齐或产生不自然的手腕姿势。为了解决这些问题,我们提出了我们在我们的回归网络中的锥体网格对准反馈(PYMAF)循环,以恢复良好的人网格恢复,并将其扩展为PYMAF-X,以恢复表达全身模型的恢复。 PYMAF的核心思想是利用特征金字塔,并根据网格图像对准状态明确纠正预测参数。具体而言,给定当前预测的参数,将相应地从更分辨率的特征中提取网格对准的证据,并备份以进行参数纠正。为了增强一致性的看法,采用辅助密集的监督来提供网格图像对应指导,而引入空间对准的关注是为了使我们的网络对全球环境的认识。当扩展PYMAF以进行全身网状恢复时,在PYMAF-X中提出了一种自适应整合策略,以产生自然手腕姿势,同时保持部分特定的估计表现良好。在几个基准数据集上,我们的方法的功效得到了验证,用于身体,手,面部和全身网状恢复,PYMAF和PYMAF-X有效地改善了网格图像的比对并实现新的最新结果。具有代码和视频结果的项目页面可在https://www.liuyebin.com/pymaf-x上找到。

We present PyMAF-X, a regression-based approach to recovering parametric full-body models from monocular images. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations into the full-body model, existing solutions tend to either degrade the alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations. The efficacy of our approach is validated on several benchmark datasets for body, hand, face, and full-body mesh recovery, where PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results. The project page with code and video results can be found at https://www.liuyebin.com/pymaf-x.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源