论文标题

具有前层归一化的Deep Transformer模型,用于COVID-19的增长预测

Deep Transformer Model with Pre-Layer Normalization for COVID-19 Growth Prediction

论文作者

Fitra, Rizki Ramadhan, Yudistira, Novanto, Mahmudy, Wayan Firdaus

论文摘要

冠状病毒疾病或Covid-19是由SARS-COV-2病毒引起的一种传染病。该病毒引起的第一个确认病例是在2019年12月底在中国武汉市发现的。然后,此案遍布全球,包括印度尼西亚。因此,《联合19》案被称为全球大流行。可以使用几种方法(例如深神经网络(DNN))预测COVID-19病例的增长,尤其是在印度尼西亚。可以使用的DNN模型之一是深层变压器,可以预测时间序列。该模型经过多种测试方案的培训,以获取最佳模型。评估是找到最佳的超参数。然后,使用预测天数,优化器,功能数量以及与长期短期记忆(LSTM)(LSTM)和复发性神经网络(RNN)的前一个模型进行比较的最佳超参数设置进行了进一步的评估。所有评估均使用平均绝对百分比误差(MAPE)的度量。根据评估的结果,使用前层归一化时,深变压器会产生最佳的结果,并预测有一天的MAPE值为18.83。此外,接受Adamax优化器训练的模型在其他测试优化器中获得了最佳性能。 Deep Transformer的性能还超过了其他测试模型,即LSTM和RNN。

Coronavirus disease or COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. The first confirmed case caused by this virus was found at the end of December 2019 in Wuhan City, China. This case then spread throughout the world, including Indonesia. Therefore, the COVID-19 case was designated as a global pandemic by WHO. The growth of COVID-19 cases, especially in Indonesia, can be predicted using several approaches, such as the Deep Neural Network (DNN). One of the DNN models that can be used is Deep Transformer which can predict time series. The model is trained with several test scenarios to get the best model. The evaluation is finding the best hyperparameters. Then, further evaluation was carried out using the best hyperparameters setting of the number of prediction days, the optimizer, the number of features, and comparison with the former models of the Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN). All evaluations used metric of the Mean Absolute Percentage Error (MAPE). Based on the results of the evaluations, Deep Transformer produces the best results when using the Pre-Layer Normalization and predicting one day ahead with a MAPE value of 18.83. Furthermore, the model trained with the Adamax optimizer obtains the best performance among other tested optimizers. The performance of the Deep Transformer also exceeds other test models, which are LSTM and RNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源