论文标题
波动方程的尖锐的能量 - 施利卡特不平等
A sharpened energy-Strichartz inequality for the wave equation
论文作者
论文摘要
由于Bez和Rogers,我们考虑了能量空间中$ \ Mathbb r^{1+5} $在$ \ mathbb r^{1+5} $上的尖锐的strichartz估计值。我们表明,可以凭着比安奇和egnell的经典Sobolev估算的精神,可以通过与与最大值的距离成正比的术语进行完善。
We consider the sharp Strichartz estimate for the wave equation on $\mathbb R^{1+5}$ in the energy space, due to Bez and Rogers. We show that it can be refined by adding a term proportional to the distance from the set of maximisers, in the spirit of the classical sharpened Sobolev estimate of Bianchi and Egnell.