论文标题

Hubbard模型的Instanton Gas方法

Instanton gas approach to the Hubbard model

论文作者

Ulybyshev, Maksim, Winterowd, Christopher, Assaad, Fakher, Zafeiropoulos, Savvas

论文摘要

在本文中,我们考虑了基于SU(2) - 符合Hubbard-Stratonovich转换的Hubbard模型的路径积分公式,该模型将辅助场与局部电子密度相结合。已知这种去耦具有常规的鞍点结构:每个鞍点是我们插入空间和虚构时间的一组基本字段配置。我们为具有预测能力的Instanton气体制定经典分区功能。也就是说,我们可以预测Instantons的分布,并表明Instanton数在热力学极限中得到了明确定义,从而定义了独特的主要鞍点。尽管事实上intsanton方法并未捕获蜂窝晶格上哈伯德模型固有的磁过渡,但我们能够描述局部力矩的形成,并伴随着短距离的抗铁磁相关性。在单个粒子光谱函数中也可以看到这一方面,该功能显示了上和下部哈伯德带的清晰迹象。我们的Instanton方法与局部动力学方法(例如动态平均场理论)具有显着相似之处,因为它具有允许局部力矩形成的独特特性而不会破坏SU(2)旋转对称性。与局部方法相反,它捕获了短率的磁波动。此外,它还通过考虑到主鞍点的波动,为系统改进提供了可能性。最后,我们表明鞍点的结构取决于晶格几何的选择。对于半填充的平方晶格,马鞍点的结构反映了磁性的局部性质作为耦合强度的函数。还讨论了我们结果对Lefschetz Thimbles的含义减轻标志问题的方法。

In this article we consider a path integral formulation of the Hubbard model based on a SU(2)-symmetrical Hubbard-Stratonovich transformation that couples auxiliary field to the local electronic density. This decoupling is known to have a regular saddle-point structure: each saddle point is a set of elementary field configurations localized in space and imaginary time which we coin instantons. We formulate a classical partition function for the instanton gas that has predictive power. Namely, we can predict the distribution of instantons and show that the instanton number is sharply defined in the thermodynamic limit, thus defining a unique dominant saddle point. Despite the fact that the instanton approach does not capture the magnetic transition inherent to the Hubbard model on the honeycomb lattice, we were able to describe the local moment formation accompanied by short-ranged anti-ferromagnetic correlations. This aspect is also seen in the single particle spectral function that shows clear signs of the upper and lower Hubbard bands. Our instanton approach bears remarkable similarities to local dynamical approaches, such as dynamical mean field theory, in the sense that it has the unique property of allowing for local moment formation without breaking the SU(2) spin symmetry. In contrast to local approaches, it captures short-ranged magnetic fluctuations. Furthermore, it also offers possibilities for systematic improvements by taking into account fluctuations around the dominant saddle point. Finally, we show that the saddle point structure depends upon the choice of lattice geometry. For the square lattice at half-filling, the saddle point structure reflects the itinerant to localized nature of the magnetism as a function of the coupling strength. The implications of our results for Lefschetz thimbles approaches to alleviate the sign problem are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源