论文标题
用布斯特顿分解算法进行环境采样
Environmental Sampling with the Boustrophedon Decomposition Algorithm
论文作者
论文摘要
通过移动机器人收集数据的自动化有望提高环境调查的功效,但要求系统自主确定如何在避免障碍的同时进行采样。现有的方法,例如Boustrophedon分解算法,可以将环境完全覆盖到指定的分辨率上,但是在许多情况下,以分布分辨率进行采样将产生长的路径,并具有可观的测量数量。减少这些路径可能会导致可行的计划,而以分配估计精度为代价。这项工作探讨了分布精度与布斯特犬分解算法的路径长度之间的权衡。我们通过计算指标来量化算法性能,以在环境分布上计算蒙特卡洛模拟中的准确性和路径长度。我们重点介绍了一个目标应优先于另一个目标,并提出对算法的修改,以通过更均匀地采样来提高其有效性。这些结果证明了Boustrophedon算法的智能部署如何有效指导自主环境抽样。
The automation of data collection via mobile robots holds promise for increasing the efficacy of environmental investigations, but requires the system to autonomously determine how to sample the environment while avoiding obstacles. Existing methods such as the boustrophedon decomposition algorithm enable complete coverage of the environment to a specified resolution, yet in many cases sampling at the resolution of the distribution would yield long paths with an infeasible number of measurements. Downsampling these paths can result in feasible plans at the expense of distribution estimation accuracy. This work explores this tradeoff between distribution accuracy and path length for the boustrophedon decomposition algorithm. We quantify algorithm performance by computing metrics for accuracy and path length in a Monte-Carlo simulation across a distribution of environments. We highlight conditions where one objective should be prioritized over the other and propose a modification to the algorithm to improve its effectiveness by sampling more uniformly. These results demonstrate how intelligent deployment of the boustrophedon algorithm can effectively guide autonomous environmental sampling.