论文标题

互动机器学习:最新的审查状态

Interactive Machine Learning: A State of the Art Review

论文作者

Wondimu, Natnael A., Buche, Cédric, Visser, Ubbo

论文摘要

事实证明,机器学习在许多软件学科中都有用,包括计算机视觉,语音和音频处理,自然语言处理,机器人技术和其他领域。但是,由于其黑箱性质和大量资源消耗,其适用性受到了严重阻碍。绩效是以巨大的计算资源为代价实现的,通常会损害模型的鲁棒性和可信度。最近的研究一直在确定缺乏互动性是这些机器学习问题的主要来源。因此,互动机器学习(IML)由于其人类的模式和相对有效的资源利用而引起了研究人员的更多关注。因此,对交互式机器学习的最新评论在减轻建立以人为本模型的努力方面起着至关重要的作用。在本文中,我们对IML的最先进进行了全面分析。我们使用面向绩效/以应用/任务为导向的混合分类法分析了显着的研究工作。我们使用自下而上的聚类方法来生成IML研究工作的分类法。在我们面向绩效的分类学中,分析了有关对抗性黑盒攻击和基于IML的防御系统,探索机器学习,资源约束学习和IML绩效评估的研究工作。我们将这些研究工作进一步分为技术和部门类别。最后,我们认为我们认为在IML中为未来工作的研究机会进行了详尽的讨论。

Machine learning has proved useful in many software disciplines, including computer vision, speech and audio processing, natural language processing, robotics and some other fields. However, its applicability has been significantly hampered due its black-box nature and significant resource consumption. Performance is achieved at the expense of enormous computational resource and usually compromising the robustness and trustworthiness of the model. Recent researches have been identifying a lack of interactivity as the prime source of these machine learning problems. Consequently, interactive machine learning (iML) has acquired increased attention of researchers on account of its human-in-the-loop modality and relatively efficient resource utilization. Thereby, a state-of-the-art review of interactive machine learning plays a vital role in easing the effort toward building human-centred models. In this paper, we provide a comprehensive analysis of the state-of-the-art of iML. We analyze salient research works using merit-oriented and application/task oriented mixed taxonomy. We use a bottom-up clustering approach to generate a taxonomy of iML research works. Research works on adversarial black-box attacks and corresponding iML based defense system, exploratory machine learning, resource constrained learning, and iML performance evaluation are analyzed under their corresponding theme in our merit-oriented taxonomy. We have further classified these research works into technical and sectoral categories. Finally, research opportunities that we believe are inspiring for future work in iML are discussed thoroughly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源