论文标题

引入$γ$ - 学习在连贯的光学通信中学习非线性脉冲成型

Introducing $γ$-lifting for Learning Nonlinear Pulse Shaping in Coherent Optical Communication

论文作者

Uhlemann, Tim, Span, Alexander, Dörner, Sebastian, Brink, Stephan ten

论文摘要

在过去的十年中,连贯的光纤通信的脉冲成型一直是研究的活跃领域。大多数早期方案都是基于最初用于线性通道的经典Nyquist脉冲塑造。最著名的经典方案,分裂的数字背部传播(DBP),使用联合启动前和均衡后,因此,非线性发射器(TX);然而,由于kerr效应,它遭受了光谱宽的光谱范围。随着通信深度学习的出现,已经意识到,自动编码器可以学会在光纤通道上有效地通信,共同优化几何星座和脉冲塑形 - 同时还考虑了线性和非线性损害,例如色度分散和kerr -norlinearity。例如,ARXIV:2006.15027显示了自动编码器如何通过使用可训练的线性TX进行KERR效应而学会减轻光谱扩展。在本文中,我们将此线性体系结构模板扩展到由发射机和接收器的卷积神经网络组成的可扩展的非线性脉冲成型。通过引入针对非线性光纤通道量身定制的新型$γ$插入训练程序,我们将稳定的自动装置融合到达到信息速率的脉冲形状稳定,在高输入幂处优于经典的拆分DBP参考。

Pulse shaping for coherent optical fiber communication has been an active area of research for the past decade. Most of the early schemes are based on classic Nyquist pulse shaping that was originally intended for linear channels. The best known classic scheme, the split digital back-propagation (DBP), uses joint pre-distortion and post equalization and hence, a nonlinear transmitter (TX); it, however, suffers from spectral broadening on the fiber due to the Kerr-effect. With the advent of deep learning in communications, it has been realized that an Autoencoder can learn to communicate efficiently over the optical fiber channel, jointly optimizing geometric constellations and pulse shaping - while also taking into account linear and nonlinear impairments such as chromatic dispersion and Kerr-nonlinearity. E.g., arXiv:2006.15027 shows how an Autoencoder can learn to mitigate spectral broadening due to the Kerr-effect using a trainable linear TX. In this paper, we extend this linear architectural template to a scalable nonlinear pulse shaping consisting of a Convolutional Neural Network at both transmitter and receiver. By introducing a novel $γ$-lifting training procedure tailored to the nonlinear optical fiber channel, we achieve stable Autoencoder convergence to pulse shapes reaching information rates outperforming the classic split DBP reference at high input powers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源