论文标题
图像和视频完成的交叉张量近似
Cross Tensor Approximation for Image and Video Completion
论文作者
论文摘要
本文提出了一个通用框架,以使用交叉张量近似值或张量列(CUR)近似来重建不完整的图像和视频。新算法的关键重要性是它们的简单性和易于实现的计算复杂性。对于具有1)结构缺失组件的数据张量或2)高率的较高速率,我们提出了一种有效的平滑张量cur算法,该算法首先使采样纤维光滑,然后应用提出的cur算法。数值实验显示了这种平滑过程的显着优势。本文的主要贡献是通过过滤(平滑)预处理进行张量完成/调查改进的多阶段CUR算法。第二个贡献是通过广泛的计算机模拟的四个不同Cur策略的图像恢复性能的详细比较。我们的模拟清楚地表明,所提出的算法要比用于张量完成的大多数现有最新算法要快得多,而性能是可比性的,而且通常更好。此外,我们将在GitHub中提供可用于各种应用程序的MATLAB代码。此外,据我们所知,尚未研究或比较到目前的CUR(交叉近似)算法以进行图像和视频完成。
This paper proposes a general framework to use the cross tensor approximation or tensor ColUmn-Row (CUR) approximation for reconstructing incomplete images and videos. The key importance of the new algorithms is their simplicity and ease of implementation with low computational complexity. For the case of data tensors with 1) structural missing components or 2) a high missing rate, we propose an efficient smooth tensor CUR algorithms which first make the sampled fibers smooth and then apply the proposed CUR algorithms. The numerical experiments show the significant benefit of this smoothing procedure. The main contribution of this paper is to develop/investigate improved multistage CUR algorithms with filtering (smoothing ) preprocessing for tensor completion. The second contribution is a detailed comparison of the performance of image recovery for four different CUR strategies via extensive computer simulations. Our simulations clearly indicated that the proposed algorithms are much faster than most of the existing state-of-the-art algorithms developed for tensor completion, while performance is comparable and often even better. Furthermore, we will provide in GitHub the MATLAB codes which can be used for various applications. Moreover, to our best knowledge, the CUR (cross approximation) algorithms have not been investigated nor compared till now for image and video completion.