论文标题

adamnodes:当神经时符合自适应力矩估计时

AdamNODEs: When Neural ODE Meets Adaptive Moment Estimation

论文作者

Cho, Suneghyeon, Hong, Sanghyun, Lee, Kookjin, Park, Noseong

论文摘要

Xia等人的最新工作。利用了经典动量加速梯度下降的连续限制,并提出了重球神经odes。尽管该模型对香草神经ODE提供了计算效率和高效用,但这种方法通常会导致内部动力学的过度调整,从而导致模型的不稳定训练。先前的工作通过使用临时方法来解决此问题,例如,使用特定的激活功能来界定内部动力学,但是所得模型不能满足确切的重力颂歌。在这项工作中,我们提出了适应性控制基于经典动量方法的加速度的自适应动量估计神经ODE(adamnodes)。我们发现它的伴随状态也满足Adamode,并且不需要先前工作所采用的临时解决方案。在评估中,我们表明adamnodes对现有神经ODS实现了最低的训练损失和功效。我们还表明,与基于经典动量的神经ODE相比,Adamnodes具有更好的训练稳定性。该结果阐明了调整优化界提出的技术,以进一步改善神经ODE的训练和推断。我们的代码可在https://github.com/pmcsh04/adamnode上找到。

Recent work by Xia et al. leveraged the continuous-limit of the classical momentum accelerated gradient descent and proposed heavy-ball neural ODEs. While this model offers computational efficiency and high utility over vanilla neural ODEs, this approach often causes the overshooting of internal dynamics, leading to unstable training of a model. Prior work addresses this issue by using ad-hoc approaches, e.g., bounding the internal dynamics using specific activation functions, but the resulting models do not satisfy the exact heavy-ball ODE. In this work, we propose adaptive momentum estimation neural ODEs (AdamNODEs) that adaptively control the acceleration of the classical momentum-based approach. We find that its adjoint states also satisfy AdamODE and do not require ad-hoc solutions that the prior work employs. In evaluation, we show that AdamNODEs achieve the lowest training loss and efficacy over existing neural ODEs. We also show that AdamNODEs have better training stability than classical momentum-based neural ODEs. This result sheds some light on adapting the techniques proposed in the optimization community to improving the training and inference of neural ODEs further. Our code is available at https://github.com/pmcsh04/AdamNODE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源