论文标题

通过高斯工艺潜在力模型,基于单一的离岸风力涡轮机中地下土应应变响应的虚拟传感

Virtual sensing of subsoil strain response in monopile-based offshore wind turbines via Gaussian process latent force models

论文作者

Zou, Joanna, Lourens, Eliz-Mari, Cicirello, Alice

论文摘要

虚拟传感技术已在对基于单波管的离岸风力涡轮机的结构健康监测的应用中获得了吸引力,因为泥线以下的应变响应(这是疲劳损伤积累的主要指标)是不切实际的,无法直接用物理仪器进行测量。高斯工艺潜在力模型(GPFLM)是一种广义的贝叶斯虚拟传感技术,将结构的物理驱动模型与系统的潜在变量的数据驱动模型相结合,以推断未衡量的应变状态。在GPLFM中,使用GP协方差内核的属性以及机械模型提供的相关信息,将未知来源作为高斯过程(GP)建模,可通过提供输入力与状态之间的协方差关系的完整随机表征来促进应变估计。结果表明,潜在输入和状态的后验推断是通过测量加速度的高斯过程回归进行的,在增强状态空间模型中使用Kalman滤波和Rauch-tung-Striebel平滑有效地计算出来。尽管GPLFM先前在数值研究中已被证明,以改善其他虚拟感测技术,从精度,鲁棒性和数值稳定性方面进行改进,但这项工作提供了GPLFM的原位验证的最初情况之一。将GPLFM的预测应变反应与荷兰韦斯特梅尔温公园的近海风力涡轮机收集的地下土壤应变数据进行了比较。

Virtual sensing techniques have gained traction in applications to the structural health monitoring of monopile-based offshore wind turbines, as the strain response below the mudline, which is a primary indicator of fatigue damage accumulation, is impractical to measure directly with physical instrumentation. The Gaussian process latent force model (GPFLM) is a generalized Bayesian virtual sensing technique which combines a physics-driven model of the structure with a data-driven model of latent variables of the system to extrapolate unmeasured strain states. In the GPLFM, modeling of unknown sources of excitation as a Gaussian process (GP) serves to facilitate strain estimation by providing a complete stochastic characterization of the covariance relationship between input forces and states, using properties of the GP covariance kernel as well as correlation information supplied by the mechanical model. It is shown that posterior inference of the latent inputs and states is performed by Gaussian process regression of measured accelerations, computed efficiently using Kalman filtering and Rauch-Tung-Striebel smoothing in an augmented state-space model. While the GPLFM has been previously demonstrated in numerical studies to improve upon other virtual sensing techniques in terms of accuracy, robustness, and numerical stability, this work provides one of the first cases of in-situ validation of the GPLFM. The predicted strain response by the GPLFM is compared to subsoil strain data collected from an operating offshore wind turbine in the Westermeerwind Park in the Netherlands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源