论文标题

关键傅立叶 - 巴索夫空间中重新固定的Boussinesq系统的全球适应性

Global well-posedness for a rescaled Boussinesq system in critical Fourier-Besov spaces

论文作者

Aurazo-Alvarez, Leithold L.

论文摘要

在这项工作中,我们证明了三维重新生效的BousSinesQ系统的全球范围良好结果,在关键的傅立叶河畔空间的框架内具有正面的全粘度和扩散率参数。这种恢复的方法允许根据参数与初始速度和温度之间的关系了解系统的行为。例如,对于足够小的粘度和较大的扩散率,可以考虑到初始温度的足够大的临界傅立叶 - 孔 - 孔孔标准,并且对于足够小的扩散率和较大的粘度,也可以考虑足够大的临界傅立叶 - 巴索夫标准,以达到速度和温度。

In this work we prove a global well-posedness result for a tridimensional rescaled Boussinesq system, with positive full viscosity and diffusivity parameters in the framework of critical Fourier-Besov spaces. This rescaled approach permits to know the behaviour of the system according to relations between both the parameters and the initial velocity and temperature; for instance, it is possible to consider, for small enough viscosity and large diffusivity, a large enough critical Fourier-Besov norm for the initial temperature and it is also possible to consider, for small enough diffusivity and large viscosity, a large enough critical Fourier-Besov norm for both the velocity and the temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源