论文标题

i-love-q在ho树lifshitz重力

I-Love-Q in Hořava-Lifshitz Gravity

论文作者

Ajith, Siddarth, Yagi, Kent, Yunes, Nicolás

论文摘要

霍华·莱夫希茨(Ho红Va-lifshitz)重力是一般相对论的替代理论,它破坏了洛伦兹的不变性,以实现紫外线完整和功率计算的可重新分配重力理论。在低能量极限中,Ho红-Lifshitz重力与称为KhrononStric Gravity的矢量调整理论相吻合。 KhrononStric Gravity与一般相对性的偏差可以通过三个耦合常数进行参数:$α$,$β$和$λ$。太阳系实验和引力波观测在$α$和$β$上施加了严格的边界,而$λ$仍然相对不受限制($λ\ lisssim 0.01 $)。在本文中,我们研究了是否可以通过惯性时刻(i),潮汐爱数(爱)和四极力矩(q)之间的通用I-Love-Q关系来限制其剩余参数,这对国家的核物质方程式中的细节不敏感。为此,我们在Khronometric重力中触动构建缓慢旋转和较弱的潮汐形式形式的中子星。我们发现I-Love-Q关系在限制$(α,β)\至0 $的$λ$中独立于$λ$。尽管字段方程的某些组成部分取决于$λ$,但我们通过诱导表明,后者后分析表明,缓慢旋转的中子星根本不依赖$λ$。另一方面,潮汐变形的中子恒星在Khronometric重力中进行了修改(尽管如前所述,通常没有修改过的爱情数字),尽管它们的观察力尚不清楚,但可能存在新的非GR爱情数字。这些发现表明,可能很难用旋转/潮汐形式的中子星来约束$λ$。

Hořava-Lifshitz gravity is an alternative theory to general relativity which breaks Lorentz invariance in order to achieve an ultraviolet complete and power-counting renormalizable theory of gravity. In the low energy limit, Hořava-Lifshitz gravity coincides with a vector-tensor theory known as khronometric gravity. The deviation of khronometric gravity from general relativity can be parametrized by three coupling constants: $α$, $β$, and $λ$. Solar system experiments and gravitational wave observations impose stringent bounds on $α$ and $β$, while $λ$ is still relatively unconstrained ($λ\lesssim 0.01$). In this paper, we study whether one can constrain this remaining parameter with neutron star observations through the universal I-Love-Q relations between the moment of inertia (I), the tidal Love number (Love), and the quadrupole moment (Q), which are insensitive to details in the nuclear matter equation of state. To do so, we perturbatively construct slowly-rotating and weakly tidally-deformed neutron stars in khronometric gravity. We find that the I-Love-Q relations are independent of $λ$ in the limit $(α,β) \to 0$. Although some components of the field equations depend on $λ$, we show through induction and a post-Minkowskian analysis that slowly-rotating neutron stars do not depend on $λ$ at all. Tidally deformed neutron stars, on the other hand, are modified in khronometric gravity (though the usual Love number is not modified, as mentioned earlier), and there are potentially new, non-GR Love numbers, though their observability is unclear. These findings indicate that it may be difficult to constrain $λ$ with rotating/tidally-deformed neutron stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源