论文标题
使用社会价值取向的自动化车辆的互动意识决策
Interaction-aware Decision-making for Automated Vehicles using Social Value Orientation
论文作者
论文摘要
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度加强学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深度强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了一种适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的过境点。
Motion control algorithms in the presence of pedestrians are critical for the development of safe and reliable Autonomous Vehicles (AVs). Traditional motion control algorithms rely on manually designed decision-making policies which neglect the mutual interactions between AVs and pedestrians. On the other hand, recent advances in Deep Reinforcement Learning allow for the automatic learning of policies without manual designs. To tackle the problem of decision-making in the presence of pedestrians, the authors introduce a framework based on Social Value Orientation and Deep Reinforcement Learning (DRL) that is capable of generating decision-making policies with different driving styles. The policy is trained using state-of-the-art DRL algorithms in a simulated environment. A novel computationally-efficient pedestrian model that is suitable for DRL training is also introduced. We perform experiments to validate our framework and we conduct a comparative analysis of the policies obtained with two different model-free Deep Reinforcement Learning Algorithms. Simulations results show how the developed model exhibits natural driving behaviours, such as short-stopping, to facilitate the pedestrian's crossing.