论文标题

使用深层卷积神经网络解决二线最佳招标问题

Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks

论文作者

Vlah, Domagoj, Šepetanc, Karlo, Pandžić, Hrvoje

论文摘要

目前解决二元优化问题的最新解决方案技术要么假定有强的问题标准,要么在计算上棘手。在本文中,我们解决了二重结构的电源系统问题,通常是在电力行业放松管制后引起的。这样的问题主要是通过使用Karush-Kuhn-Tucker最佳条件以二进制变量为代价将低级问题转换为一组等效约束来解决的。此外,如果较低级别的问题是非convex,则强双重性不会使单层还原技术不可应用。为了克服这一点,我们使用近似函数完全绕过下层,以复制相关的下层对上层的效果,提出了一个有效的数值方案。近似函数是通过训练深度卷积神经网络来构建的。迭代运行数值过程以提高准确性。作为一个案例研究,提出的方法应用于价格制剂储能最佳招标问题,该问题考虑了较低级别的基于AC电源的市场清算。结果表明,与较少准确的直流市场表示相比,实现了更大的实际利润。

Current state-of-the-art solution techniques for solving bilevel optimization problems either assume strong problem regularity criteria or are computationally intractable. In this paper we address power system problems of bilevel structure, commonly arising after the deregulation of the power industry. Such problems are predominantly solved by converting the lower-level problem into a set of equivalent constraints using the Karush-Kuhn-Tucker optimality conditions at an expense of binary variables. Furthermore, in case the lower-level problem is nonconvex, the strong duality does not hold rendering the single-level reduction techniques inapplicable. To overcome this, we propose an effective numerical scheme based on bypassing the lower level completely using an approximation function that replicates the relevant lower level effect on the upper level. The approximation function is constructed by training a deep convolutional neural network. The numerical procedure is run iteratively to enhance the accuracy. As a case study, the proposed method is applied to a price-maker energy storage optimal bidding problem that considers an AC power flow-based market clearing in the lower level. The results indicate that greater actual profits are achieved as compared to the less accurate DC market representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源