论文标题

使用量身定制的度量学习策略从遥感图像中提取水坝水库

Dam reservoir extraction from remote sensing imagery using tailored metric learning strategies

论文作者

van Soesbergen, Arnout, Chu, Zedong, Shi, Miaojing, Mulligan, Mark

论文摘要

大坝水库在实现可持续发展目标和全球气候目标方面发挥着重要作用。但是,特别是对于小型水坝水库,其地理位置缺乏一致的数据。为了解决此数据差距,一种有希望的方法是基于全球可用的遥感图像进行自动化的大坝水库提取。它可以被认为是水体提取的精细颗粒任务,其中涉及在图像中提取水位区域,然后将大坝储层与天然水体分开。我们提出了一种基于新型的深神经网络(DNN)管道,该管道将大坝水库提取到水体分割和大坝储层识别中。首先将水体与分割模型中的背景土地分离,然后在分类模型中预测每个单个水体为大坝储层或天然水体。对于以前的一步,将跨图像的点级度量学习注入分段模型,以解决水域和土地区域之间的轮廓模棱两可。对于后一个步骤,将带有簇的三重速度的先前指导度量注入分类模型中,以基于储层群集以细粒度优化图像嵌入空间。为了促进未来的研究,我们建立了一个带有地球图像数据的基准数据集,并从西非和印度的河流盆地标记为人类标记的水库。在水体分割任务,水坝储层识别任务和关节坝储层提取任务中,对此基准进行了广泛的实验。将我们的方法与艺术方法的方法进行比较时,已经在各自的任务中观察到了卓越的性能。

Dam reservoirs play an important role in meeting sustainable development goals and global climate targets. However, particularly for small dam reservoirs, there is a lack of consistent data on their geographical location. To address this data gap, a promising approach is to perform automated dam reservoir extraction based on globally available remote sensing imagery. It can be considered as a fine-grained task of water body extraction, which involves extracting water areas in images and then separating dam reservoirs from natural water bodies. We propose a novel deep neural network (DNN) based pipeline that decomposes dam reservoir extraction into water body segmentation and dam reservoir recognition. Water bodies are firstly separated from background lands in a segmentation model and each individual water body is then predicted as either dam reservoir or natural water body in a classification model. For the former step, point-level metric learning with triplets across images is injected into the segmentation model to address contour ambiguities between water areas and land regions. For the latter step, prior-guided metric learning with triplets from clusters is injected into the classification model to optimize the image embedding space in a fine-grained level based on reservoir clusters. To facilitate future research, we establish a benchmark dataset with earth imagery data and human labelled reservoirs from river basins in West Africa and India. Extensive experiments were conducted on this benchmark in the water body segmentation task, dam reservoir recognition task, and the joint dam reservoir extraction task. Superior performance has been observed in the respective tasks when comparing our method with state of the art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源