论文标题
预测Covid-19传播古典和机器学习模型的合奏:西班牙的案例研究
Forecasting COVID-19 spreading trough an ensemble of classical and machine learning models: Spain's case study
论文作者
论文摘要
在这项工作中,我们评估了人口模型和机器学习模型的合奏的适用性,以预测COVID-19大流行的不久的将来的演变,并在西班牙具有特殊的用例。我们仅依靠开放和公共数据集,将发生率,疫苗接种,人类流动性和天气数据融合来喂养我们的机器学习模型(随机森林,梯度增强,K-nearest邻居和内核岭回归)。我们使用发病率数据来调整经典人群模型(Gompertz,Logistic,Richards,Bertalanffy),以便能够更好地捕获数据的趋势。然后,我们整合了这两个模型家族,以获得更强大,更准确的预测。此外,我们已经观察到在添加新功能(疫苗,移动性,气候条件)时,使用机器学习模型获得的预测有所改善,使用Shapley添加性解释值分析了每个功能的重要性。就像在任何其他建模工作中一样,数据和预测质量都有多个局限性,因此必须从关键的角度看,正如我们在文本中所讨论的那样。我们的工作得出的结论是,这些模型的合奏使用可以改善单个预测(仅使用机器学习模型或仅使用人群模型),并且在由于缺乏相关数据而无法使用隔室模型的情况下,可以谨慎地应用。
In this work we evaluate the applicability of an ensemble of population models and machine learning models to predict the near future evolution of the COVID-19 pandemic, with a particular use case in Spain. We rely solely in open and public datasets, fusing incidence, vaccination, human mobility and weather data to feed our machine learning models (Random Forest, Gradient Boosting, k-Nearest Neighbours and Kernel Ridge Regression). We use the incidence data to adjust classic population models (Gompertz, Logistic, Richards, Bertalanffy) in order to be able to better capture the trend of the data. We then ensemble these two families of models in order to obtain a more robust and accurate prediction. Furthermore, we have observed an improvement in the predictions obtained with machine learning models as we add new features (vaccines, mobility, climatic conditions), analyzing the importance of each of them using Shapley Additive Explanation values. As in any other modelling work, data and predictions quality have several limitations and therefore they must be seen from a critical standpoint, as we discuss in the text. Our work concludes that the ensemble use of these models improves the individual predictions (using only machine learning models or only population models) and can be applied, with caution, in cases when compartmental models cannot be utilized due to the lack of relevant data.