论文标题
在有限维度中,巴黎方案与多热动力学之间的关系
The relation between Parisi scheme and multi-thermalized dynamics in finite dimensions
论文作者
论文摘要
在本说明中,我们总结了在有限维玻璃中的平衡动力学之间的平衡和缓慢之间的连接,例如我们今天了解到它们。如果我们假设有限维系统相对于一个弱随机扰动(随机稳定性)是稳定的,那么当且仅当Boltzmann-Gibbs分布遵守超级巴黎分布时,其动力学就具有“多思维”结构。
In this note we summarize the connections between equilibrium and slow out of equilibrium dynamics in finite dimensional glasses, such as we understand them today. If we assume that a finite-dimensional system is stable with respect to a family of weak random perturbations (stochastic stability), then its dynamics have a `Multithermalization' structure if and only if the Boltzmann-Gibbs distribution obeys an Ultrametric Parisi distribution.