论文标题
3型脉络
Homotopy Equivalences of 3-Manifolds
论文作者
论文摘要
让$ m $成为定向关闭的$ 3 $ manifold。我们证明存在一个常数$ a_m $,仅取决于歧管$ m $,因此,对于每一个$ m $ $ m $ a $ m $ f $ f $ f $ f $ f $ f $ f $ f $ a $ a $ a $ a $ $ k $ a $ k $,因此$ 1 \ leq k \ leq a_m $和$ f^k $是同性恋同性恋的同型。
Let $M$ be an oriented closed $3$-manifold. We prove that there exists a constant $A_M$, depending only on the manifold $M$, such that for every self-homotopy equivalence $f$ of $M$ there is an integer $k$ such that $1 \leq k \leq A_M$ and $f^k$ is homotopic to a homeomorphism.