论文标题

双方量子系统中相关性的速度限制

Speed limits on correlations in bipartite quantum systems

论文作者

Pandey, Vivek, Shrimali, Divyansh, Mohan, Brij, Das, Siddhartha, Pati, Arun Kumar

论文摘要

量子速度限制与量子系统在给定的动态过程下从初始状态变为最终状态所需的最短时间。它阐明了所需的状态变换可以多快,这与量子技术的设计和控制相关。在本文中,我们对诸如纠缠,钟声相关性以及在动态过程下演变的量子系统的量子相互信息等相关性得出了速度限制。我们的主要结果是对纠缠单调的速度限制称为负性,该单调为任意尺寸两分量子系统和过程。我们认为的另一个纠缠单调是同意。为了说明我们的速度限制的功效,我们通过分析和数值计算了各种实际量量子过程的消极,并发和钟声相关性的速度限制。我们能够证明,对于我们考虑过的实际示例,我们得出的一些速度极限实际上是可以实现的,因此可以认为这些界限很紧。

Quantum speed limit is bound on the minimum time a quantum system requires to evolve from an initial state to final state under a given dynamical process. It sheds light on how fast a desired state transformation can take place which is pertinent for design and control of quantum technologies. In this paper, we derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes. Our main result is speed limit on an entanglement monotone called negativity which holds for arbitrary dimensional bipartite quantum systems and processes. Another entanglement monotone which we consider is the concurrence. To illustrate efficacy of our speed limits, we analytically and numerically compute the speed limits on the negativity, concurrence, and Bell-CHSH correlation for various quantum processes of practical interest. We are able to show that for practical examples we have considered, some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源