论文标题

liouville方程式的刚性结果

Rigidity results on Liouville equation

论文作者

Eremenko, Alexandre, Gui, Changfeng, Li, Qinfeng, Xu, Lu

论文摘要

我们提供了从liouville方程$$的界限的解决方案的完整分类 - ΔU= e^{2U} \ quad \ mbox {in} \ quad {\ quad {\ sathbf {r}}}^2。$ $ $ $更广泛地,class $ n:= \ limsup ftity fty fty ftinity,更广泛地解决方案。 u(z)/\ log | z |:= k(u)<\ infty \} $$。结果,我们获得了五个刚性结果。首先,$ k(u)$只能采用离散值:$ k = -2 $或$ 2K $是一个非负整数。其次,$ u \ to- \ to infty $ as $ z \ to \ infty $,并且仅当$ u $在某个点上是径向的。第三,如果$ u $相对于$ x $和$ y $ axes和$ u_x <0,\; u_y <0 $在第一个象限中,$ u $是径向对称的。第四,如果$ u $是凹面并且从上方界限,则$ u $是一维的。第五,如果$ u $从上方界限,而$ {\ mathbf {r}}^2 $的直径与公制$ e^{2u}δ$是$π$,其中$Δ$是欧几里得公制,那么$ u $是$ u $,则是点宽度或一级或一级。 此外,我们在更高维度的liouville方程式上扩展了凹度刚度。

We give a complete classification of solutions bounded from above of the Liouville equation $$-Δu=e^{2u}\quad\mbox{in}\quad {\mathbf{R}}^2.$$ More generally, solutions in the class $$N:=\{ u:\limsup_{z\to\infty} u(z)/\log|z|:=k(u)<\infty\}$$ are described. As a consequence, we obtain five rigidity results. First, $k(u)$ can take only a discrete set of values: either $k=-2$, or $2k$ is a non-negative integer. Second, $u\to-\infty$ as $z\to\infty$, if and only if $u$ is radial about some point. Third, if $u$ is symmetric with respect to $x$ and $y$ axes and $u_x<0,\; u_y<0$ in the first quadrant then $u$ is radially symmetric. Fourth, if $u$ is concave and bounded from above, then $u$ is one-dimensional. Fifth, if $u$ is bounded from above, and the diameter of ${\mathbf{R}}^2$ with the metric $e^{2u}δ$ is $π$, where $δ$ is the Euclidean metric, then $u$ is either radial about a point or one-dimensional. In addition, we extend the concavity rigidity result on Liouville equation in higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源