论文标题
基于XAI:打破消融研究以解释的人工智能
BASED-XAI: Breaking Ablation Studies Down for Explainable Artificial Intelligence
论文作者
论文摘要
可解释的人工智能(XAI)方法缺乏地面真理。方法开发人员依靠公理来确定其解释行为的理想特性。对于需要解释性的机器学习的高利益使用,将公理依靠作为实现或用法不足以无法实现理想不足。结果,对验证XAI方法的性能进行了积极的研究。在依赖XAI的域中,对验证的需求特别放大。经常用于评估其效用的程序,并在某种程度上是他们的忠诚度,这是一项消融研究。通过在重要性等级顺序上扰动输入变量,目标是评估模型性能的敏感性。扰动重要变量应与模型能力度量的降低相关,而不是扰动不太重要的特征。虽然意图很明确,但实际实施细节尚未针对表格数据进行严格研究。使用五个数据集,三种XAI方法,四个基线和三个扰动,我们的目的是表明1)不同的扰动和添加简单的护栏如何有助于避免可能有缺陷的结论,2)分类变量的处理方式如何在hecoctability and a Planitiation cludiation the Plastipation and baselines中进行XAI方法和XAI方法,以及如何确定XAI方法和XAI方法。
Explainable artificial intelligence (XAI) methods lack ground truth. In its place, method developers have relied on axioms to determine desirable properties for their explanations' behavior. For high stakes uses of machine learning that require explainability, it is not sufficient to rely on axioms as the implementation, or its usage, can fail to live up to the ideal. As a result, there exists active research on validating the performance of XAI methods. The need for validation is especially magnified in domains with a reliance on XAI. A procedure frequently used to assess their utility, and to some extent their fidelity, is an ablation study. By perturbing the input variables in rank order of importance, the goal is to assess the sensitivity of the model's performance. Perturbing important variables should correlate with larger decreases in measures of model capability than perturbing less important features. While the intent is clear, the actual implementation details have not been studied rigorously for tabular data. Using five datasets, three XAI methods, four baselines, and three perturbations, we aim to show 1) how varying perturbations and adding simple guardrails can help to avoid potentially flawed conclusions, 2) how treatment of categorical variables is an important consideration in both post-hoc explainability and ablation studies, and 3) how to identify useful baselines for XAI methods and viable perturbations for ablation studies.