论文标题

DTG-SSOD:半监督对象检测的密集教师指导

DTG-SSOD: Dense Teacher Guidance for Semi-Supervised Object Detection

论文作者

Li, Gang, Li, Xiang, Wang, Yujie, Wu, Yichao, Liang, Ding, Zhang, Shanshan

论文摘要

平均老师(MT)方案在半监督对象检测(SSOD)中被广泛采用。在MT中,通过手工制作的标签分配,采用了由教师的最终预测(例如,在无最大抑制(NMS)后处理之后)提供的稀疏伪标签(例如,在非最大抑制(NMS)后处理之后)。但是,稀疏到密集的范式使SSOD的管道变得复杂,同时忽略了强大的直接,密集的教师的监督。在本文中,我们试图直接利用教师的密集指导来监督学生培训,即密集至密集的范式。具体而言,我们提出了反向NMS聚类(INC)和秩匹配(RM),以实例化密集的监督,而无需广泛使用的常规稀疏伪标签。 Inc带领学生将候选箱子分组为NMS中的群集,这是通过学习在NMS过程中揭示的分组信息来实现的。在通过Inc获得了与教师相同的分组计划之后,学生通过排名匹配进一步模仿了教师与群集候选人的排名分配。借助拟议的Inc和RM,我们将密集的教师指导集成到半监督的对象检测(称为DTG-SSOD)中,成功地放弃了稀疏的伪标签,并在未标记的数据上提供了更有信息的学习。在可可基准测试上,我们的DTG-SSOD在各种标签率下实现了最先进的性能。例如,在10%的标签率下,DTG-SSOD将监督的基线从26.9提高到35.9地图,表现优于先前的最佳方法软教师1.9分。

The Mean-Teacher (MT) scheme is widely adopted in semi-supervised object detection (SSOD). In MT, the sparse pseudo labels, offered by the final predictions of the teacher (e.g., after Non Maximum Suppression (NMS) post-processing), are adopted for the dense supervision for the student via hand-crafted label assignment. However, the sparse-to-dense paradigm complicates the pipeline of SSOD, and simultaneously neglects the powerful direct, dense teacher supervision. In this paper, we attempt to directly leverage the dense guidance of teacher to supervise student training, i.e., the dense-to-dense paradigm. Specifically, we propose the Inverse NMS Clustering (INC) and Rank Matching (RM) to instantiate the dense supervision, without the widely used, conventional sparse pseudo labels. INC leads the student to group candidate boxes into clusters in NMS as the teacher does, which is implemented by learning grouping information revealed in NMS procedure of the teacher. After obtaining the same grouping scheme as the teacher via INC, the student further imitates the rank distribution of the teacher over clustered candidates through Rank Matching. With the proposed INC and RM, we integrate Dense Teacher Guidance into Semi-Supervised Object Detection (termed DTG-SSOD), successfully abandoning sparse pseudo labels and enabling more informative learning on unlabeled data. On COCO benchmark, our DTG-SSOD achieves state-of-the-art performance under various labelling ratios. For example, under 10% labelling ratio, DTG-SSOD improves the supervised baseline from 26.9 to 35.9 mAP, outperforming the previous best method Soft Teacher by 1.9 points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源