论文标题
固态NMR中脉冲序列优化的Floquet理论的连续方法
A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR
论文作者
论文摘要
我们提出了一个使用连续频率空间来描述和设计固态NMR实验的框架。该方法类似于NMR的浮雕处理良好,但不限于周期性的哈密顿人,并且允许以反向方式设计实验。该框架基于对连续傅立叶空间的扰动理论,这导致有效,即时间独立的哈密顿量。它允许从所需有效的哈密顿式的脉冲方案进行后退计算,这是自旋系统参数的函数。我们展示了一个例子,如何从序列的所需化学偏移偏移行为中计算镜像实验中的RF辐射。
We present a framework that uses a continuous frequency space to describe and design solid-state NMR experiments. The approach is similar to the well established Floquet treatment for NMR, but is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behaviour of the sequence.