论文标题

使用多个容器轨迹后面的几何形状进行捕鱼活动检测的半监督方法

A semi-supervised methodology for fishing activity detection using the geometry behind the trajectory of multiple vessels

论文作者

Ferreira, Martha Dais, Spadon, Gabriel, Soares, Amilcar, Matwin, Stan

论文摘要

自动识别系统(AIS)消息对于使用无线电链路和卫星收发器在全球范围内跨海的血管活动很有用。这样的数据在跟踪血管活动和映射迁移率模式(例如捕鱼中发现的)中起着重要作用。因此,本文提出了一种从AIS数据中检测捕捞活动检测的几何驱动的半监督方法。通过提出的方法,我们展示了如何探索消息中包含的信息,以提取描述船舶路线几何形状的特征。为此,我们利用集群分析的无监督性质来标记轨迹的几何形状,强调了容器运动模式的变化,该变化倾向于表明捕鱼活动。提议的无监督方法获得的标签用于检测捕鱼活动,我们将其作为时间序列分类任务进行。在这种情况下,我们在AIS数据流上使用经常性神经网络提出了一个解决方案,该解决方案大约是50种不同看不见的渔船的整个轨迹的总$ F $分数的87%。此类结果伴随着广泛的基准研究,该研究评估了不同复发性神经网络(RNN)体系结构的性能。总之,这项工作通过提出一个详尽的过程,其中包括数据准备,标签,数据建模和模型验证。因此,我们提出了一种新颖的解决方案,用于迁移模式检测,该解决方案依赖于时间上展开轨迹并观察其固有的几何形状。

Automatic Identification System (AIS) messages are useful for tracking vessel activity across oceans worldwide using radio links and satellite transceivers. Such data plays a significant role in tracking vessel activity and mapping mobility patterns such as those found in fishing. Accordingly, this paper proposes a geometric-driven semi-supervised approach for fishing activity detection from AIS data. Through the proposed methodology we show how to explore the information included in the messages to extract features describing the geometry of the vessel route. To this end, we leverage the unsupervised nature of cluster analysis to label the trajectory geometry highlighting the changes in the vessel's moving pattern which tends to indicate fishing activity. The labels obtained by the proposed unsupervised approach are used to detect fishing activities, which we approach as a time-series classification task. In this context, we propose a solution using recurrent neural networks on AIS data streams with roughly 87% of the overall $F$-score on the whole trajectories of 50 different unseen fishing vessels. Such results are accompanied by a broad benchmark study assessing the performance of different Recurrent Neural Network (RNN) architectures. In conclusion, this work contributes by proposing a thorough process that includes data preparation, labeling, data modeling, and model validation. Therefore, we present a novel solution for mobility pattern detection that relies upon unfolding the trajectory in time and observing their inherent geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源