论文标题
Transfa:基于变压器的面部属性评估表示
TransFA: Transformer-based Representation for Face Attribute Evaluation
论文作者
论文摘要
面部属性评估在视频监视和面部分析中起着重要作用。尽管基于卷积神经网络的方法取得了长足的进步,但它们不可避免地一次仅与一个当地社区打交道。此外,现有方法主要将面部属性评估视为单个多标签分类任务,而忽略了语义属性和面部身份信息之间的固有关系。在本文中,我们提出了一种基于\ textbf {f} ace \ textbf {a} ttribute评估方法(\ textbf {transfa})的小说\ textbf {trans}以前的表示形式,可以有效地增强属性歧视性表示。多个分支变压器用于探索相似语义区域中不同属性之间的相互关系以进行属性特征学习。特别是,层次标识构成属性损失旨在训练端到端体系结构,这可以进一步整合面部身份判别信息以提高性能。多个面部属性基准的实验结果表明,与最先进的方法相比,所提出的Transfa取得了出色的性能。
Face attribute evaluation plays an important role in video surveillance and face analysis. Although methods based on convolution neural networks have made great progress, they inevitably only deal with one local neighborhood with convolutions at a time. Besides, existing methods mostly regard face attribute evaluation as the individual multi-label classification task, ignoring the inherent relationship between semantic attributes and face identity information. In this paper, we propose a novel \textbf{trans}former-based representation for \textbf{f}ace \textbf{a}ttribute evaluation method (\textbf{TransFA}), which could effectively enhance the attribute discriminative representation learning in the context of attention mechanism. The multiple branches transformer is employed to explore the inter-correlation between different attributes in similar semantic regions for attribute feature learning. Specially, the hierarchical identity-constraint attribute loss is designed to train the end-to-end architecture, which could further integrate face identity discriminative information to boost performance. Experimental results on multiple face attribute benchmarks demonstrate that the proposed TransFA achieves superior performances compared with state-of-the-art methods.