论文标题
西地中海湿地鸟类物种分类:在新的注释数据集上评估小英寸的深度学习方法
Western Mediterranean wetlands bird species classification: evaluating small-footprint deep learning approaches on a new annotated dataset
论文作者
论文摘要
通过生物声监测设备组成的无线声传感器网络运行的专家系统的部署,从声音中识别鸟类物种将使许多生态价值任务自动化,包括对鸟类种群组成的分析或在环境兴趣领域中发现濒临灭绝的物种。由于人工智能的最新进展,可以将这些设备具有准确的音频分类功能,其中深度学习技术出色。但是,使生物声音设备负担得起的一个关键问题是使用小脚印深神经网络,这些神经网络可以嵌入资源和电池约束硬件平台中。因此,这项工作对两个重型和大脚印深神经网络(VGG16和RESNET50)和轻量级替代方案进行了批判性比较分析。我们的实验结果表明,MobilenetV2的平均F1得分低于RESNET50(0.789 vs. 0.834)的5 \%低于5%,其性能要比VGG16更好,而足迹大小近40倍。此外,为了比较模型,我们创建并公开了西部地中海湿地鸟类数据集,其中包括201.6分钟和5,795个音频摘录,摘录了20种特有鸟类的aiguamolls del'empordà自然公园。
The deployment of an expert system running over a wireless acoustic sensors network made up of bioacoustic monitoring devices that recognise bird species from their sounds would enable the automation of many tasks of ecological value, including the analysis of bird population composition or the detection of endangered species in areas of environmental interest. Endowing these devices with accurate audio classification capabilities is possible thanks to the latest advances in artificial intelligence, among which deep learning techniques excel. However, a key issue to make bioacoustic devices affordable is the use of small footprint deep neural networks that can be embedded in resource and battery constrained hardware platforms. For this reason, this work presents a critical comparative analysis between two heavy and large footprint deep neural networks (VGG16 and ResNet50) and a lightweight alternative, MobileNetV2. Our experimental results reveal that MobileNetV2 achieves an average F1-score less than a 5\% lower than ResNet50 (0.789 vs. 0.834), performing better than VGG16 with a footprint size nearly 40 times smaller. Moreover, to compare the models, we have created and made public the Western Mediterranean Wetland Birds dataset, consisting of 201.6 minutes and 5,795 audio excerpts of 20 endemic bird species of the Aiguamolls de l'Empordà Natural Park.