论文标题
被遮挡的人体捕获以自我监督的时空运动捕获
Occluded Human Body Capture with Self-Supervised Spatial-Temporal Motion Prior
论文作者
论文摘要
尽管近年来,在无单眼制造商的人类运动捕获上取得了重大进展,但最先进的方法仍然很难在遮挡场景中获得令人满意的结果。有两个主要原因是:一个是封闭的运动捕获本质上是模棱两可的,因为各种3D姿势可以映射到相同的2D观测值,这总是导致不可靠的估计。另一个是没有足够的封闭人类数据可用于训练健壮的模型。为了解决这些障碍,我们的钥匙界是使用非封闭的人类数据来学习以自我监督策略的封闭人类的联合时空运动。为了进一步减少合成数据和实际遮挡数据之间的差距,我们构建了第一个3D遮挡运动数据集〜(Ocmotion),该数据集可用于训练和测试。我们在2D地图中编码运动,并在非封闭数据上合成遮挡,以进行自我监督训练。然后设计一个空间层以学习联合级别的相关性。博学的先前降低了闭塞的歧义,并且对各种遮挡类型具有鲁棒性,然后采用这些类型来帮助封闭的人类运动捕获。实验结果表明,我们的方法可以从具有良好概括能力和运行时效率的遮挡视频中产生准确且相干的人类动作。该数据集和代码可在\ url {https://github.com/boycehbz/chomp}上公开获得。
Although significant progress has been achieved on monocular maker-less human motion capture in recent years, it is still hard for state-of-the-art methods to obtain satisfactory results in occlusion scenarios. There are two main reasons: the one is that the occluded motion capture is inherently ambiguous as various 3D poses can map to the same 2D observations, which always results in an unreliable estimation. The other is that no sufficient occluded human data can be used for training a robust model. To address the obstacles, our key-idea is to employ non-occluded human data to learn a joint-level spatial-temporal motion prior for occluded human with a self-supervised strategy. To further reduce the gap between synthetic and real occlusion data, we build the first 3D occluded motion dataset~(OcMotion), which can be used for both training and testing. We encode the motions in 2D maps and synthesize occlusions on non-occluded data for the self-supervised training. A spatial-temporal layer is then designed to learn joint-level correlations. The learned prior reduces the ambiguities of occlusions and is robust to diverse occlusion types, which is then adopted to assist the occluded human motion capture. Experimental results show that our method can generate accurate and coherent human motions from occluded videos with good generalization ability and runtime efficiency. The dataset and code are publicly available at \url{https://github.com/boycehbz/CHOMP}.