论文标题
范德华磁铁中的众多特殊点
Multitude of exceptional points in van der Waals magnets
论文作者
论文摘要
最近有几项工作解决了耦合磁系统的长波长动力学中,非热汉密尔顿人的特殊点(EPS)的出现。在这里,通过关注Van der Waals铁磁双层的驱动磁化动力学,我们表明,异常点也可以在第一个Brillouin区域的扩展部分出现。此外,我们证明了有效的非温元镁汉密尔顿(Hamiltonian)的特征值纯粹是真实的或具有复杂的偶联对,它尊重异常的波形依赖性伪 - 热性。最后,对于扶手椅和曲折的纳米替比几何形状,我们讨论了拓扑边缘状态的复杂和纯粹的真实光谱及其实验意义。
Several works have recently addressed the emergence of exceptional points (EPs), i.e., spectral singularities of non-Hermitian Hamiltonians, in the long-wavelength dynamics of coupled magnetic systems. Here, by focusing on the driven magnetization dynamics of a van der Waals ferromagnetic bilayer, we show that exceptional points can appear over extended portions of the first Brillouin zone as well. Furthermore, we demonstrate that the effective non-Hermitian magnon Hamiltonian, whose eigenvalues are purely real or come in complex-conjugate pairs, respects an unusual wavevector-dependent pseudo-Hermiticity. Finally, for both armchair and zigzag nanoribbon geometries, we discuss both the complex and purely real spectra of the topological edge states and their experimental implications.