论文标题

对比深度监督

Contrastive Deep Supervision

论文作者

Zhang, Linfeng, Chen, Xin, Zhang, Junbo, Dong, Runpei, Ma, Kaisheng

论文摘要

深度学习的成功通常伴随着神经网络深度的增长。但是,传统培训方法仅在最后一层监督神经网络并逐层传播,这导致了优化中间层的困难。最近,已经提出了深入的监督,以在深神经网络的中间层中添加辅助分类器。通过通过监督任务损失优化这些辅助分类器,可以将监督直接应用于浅层层。但是,深层监督与众所周知的观察结果冲突,即浅层层学习低级特征,而不是任务偏向的高级语义特征。为了解决这个问题,本文提出了一个名为“对比深度监督”的新型培训框架,该框架通过基于增强的对比学习来监督中间层。具有11个模型的九个流行数据集的实验结果证明了其对监督学习,半监督学习和知识蒸馏的一般图像分类,细粒度的图像分类和对象检测的影响。代码已在Github发布。

The success of deep learning is usually accompanied by the growth in neural network depth. However, the traditional training method only supervises the neural network at its last layer and propagates the supervision layer-by-layer, which leads to hardship in optimizing the intermediate layers. Recently, deep supervision has been proposed to add auxiliary classifiers to the intermediate layers of deep neural networks. By optimizing these auxiliary classifiers with the supervised task loss, the supervision can be applied to the shallow layers directly. However, deep supervision conflicts with the well-known observation that the shallow layers learn low-level features instead of task-biased high-level semantic features. To address this issue, this paper proposes a novel training framework named Contrastive Deep Supervision, which supervises the intermediate layers with augmentation-based contrastive learning. Experimental results on nine popular datasets with eleven models demonstrate its effects on general image classification, fine-grained image classification and object detection in supervised learning, semi-supervised learning and knowledge distillation. Codes have been released in Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源