论文标题
线性二次差异游戏的逆问题:控制策略何时nash?
The Inverse Problem of Linear-Quadratic Differential Games: When is a Control Strategies Profile Nash?
论文作者
论文摘要
本文旨在制定和研究非合作线性二次游戏的逆问题:鉴于控制策略的概况,找到了控制策略的成本参数是NASH。我们将问题提出为领导者的问题,领导者的目标是在自私的玩家中植入所需的控制策略。在本文中,我们利用频域技术为给定的稳定控制策略的给定特征的成本参数开发出必要的,在给定的线性系统下为NASH。必要且充分的条件包括每个玩家的圆圈标准以及与每个玩家的传输功能相关的等级条件。该条件提供了一种分析方法来检查此类成本参数的存在,而先前的研究需要以数字上解决凸的可行性问题以回答相同的问题。我们在频域表示中开发一个身份,以表征成本参数,我们称之为卡尔曼方程。卡尔曼方程降低了涉及解决凸的可行性问题的时间域分析中的冗余。使用Kalman方程式,我们还表明,领导者可以通过对共享状态施加惩罚,而不是对其他玩家的行动进行惩罚,以避免对不公平的印象,从而强制执行相同的NASH配置文件。
This paper aims to formulate and study the inverse problem of non-cooperative linear quadratic games: Given a profile of control strategies, find cost parameters for which this profile of control strategies is Nash. We formulate the problem as a leader-followers problem, where a leader aims to implant a desired profile of control strategies among selfish players. In this paper, we leverage frequency-domain techniques to develop a necessary and sufficient condition on the existence of cost parameters for a given profile of stabilizing control strategies to be Nash under a given linear system. The necessary and sufficient condition includes the circle criterion for each player and a rank condition related to the transfer function of each player. The condition provides an analytical method to check the existence of such cost parameters, while previous studies need to solve a convex feasibility problem numerically to answer the same question. We develop an identity in frequency-domain representation to characterize the cost parameters, which we refer to as the Kalman equation. The Kalman equation reduces redundancy in the time-domain analysis that involves solving a convex feasibility problem. Using the Kalman equation, we also show the leader can enforce the same Nash profile by applying penalties on the shared state instead of penalizing the player for other players' actions to avoid the impression of unfairness.