论文标题
通过预处理的特征验器加速可认证的估计
Accelerating Certifiable Estimation with Preconditioned Eigensolvers
论文作者
论文摘要
凸(特别是半决赛)放松提供了一种强大的方法来构建健壮的机器感知系统,从而使在许多实际设置中恢复了具有挑战性估计问题的全球最佳解决方案。然而,解决这种方法的大规模半决赛松弛仍然是一个巨大的计算挑战。在许多最先进的(基于孟买分解)可认证的估计方法的主要成本是解决方案验证(测试给定候选解决方案的全球最优性),这需要计算某些对称证书矩阵的最低特征型。在这封信中,我们展示了如何显着加速此验证步骤,从而显示了可认证的估计方法的总体速度。首先,我们表明,在Burer-Monteiro方法中产生的证书矩阵通常具有光谱,使验证问题使用标准的迭代特征值方法很昂贵。然后,我们展示了如何使用预处理的特征材料来应对这一挑战;具体而言,我们根据局部最佳的块预处理共轭梯度(LOBPCG)方法设计了一种专门的解决方案验证算法,并设计了一个简单但高效的代数预处理器。对各种模拟和实际示例的实验评估表明,我们提出的验证方案在实践中非常有效,可以通过高达280倍加速解决方案验证,而总体居住的曼端方法则最多可以通过16倍而不是标准的Lanczos方法,而当将其应用于放松身上,则可以从大型的Slam Slam Benchmarks进行放松。
Convex (specifically semidefinite) relaxation provides a powerful approach to constructing robust machine perception systems, enabling the recovery of certifiably globally optimal solutions of challenging estimation problems in many practical settings. However, solving the large-scale semidefinite relaxations underpinning this approach remains a formidable computational challenge. A dominant cost in many state-of-the-art (Burer-Monteiro factorization-based) certifiable estimation methods is solution verification (testing the global optimality of a given candidate solution), which entails computing a minimum eigenpair of a certain symmetric certificate matrix. In this letter, we show how to significantly accelerate this verification step, and thereby the overall speed of certifiable estimation methods. First, we show that the certificate matrices arising in the Burer-Monteiro approach generically possess spectra that make the verification problem expensive to solve using standard iterative eigenvalue methods. We then show how to address this challenge using preconditioned eigensolvers; specifically, we design a specialized solution verification algorithm based upon the locally optimal block preconditioned conjugate gradient (LOBPCG) method together with a simple yet highly effective algebraic preconditioner. Experimental evaluation on a variety of simulated and real-world examples shows that our proposed verification scheme is very effective in practice, accelerating solution verification by up to 280x, and the overall Burer-Monteiro method by up to 16x, versus the standard Lanczos method when applied to relaxations derived from large-scale SLAM benchmarks.