论文标题

引导以用户为中心的以任务为中心的对话系统

Bootstrapping a User-Centered Task-Oriented Dialogue System

论文作者

Chen, Shijie, Chen, Ziru, Deng, Xiang, Lewis, Ashley, Mo, Lingbo, Stevens, Samuel, Wang, Zhen, Yue, Xiang, Zhang, Tianshu, Su, Yu, Sun, Huan

论文摘要

我们提出了Tacobot,这是一个为任务的对话系统,为就职Alexa Prive Taskbot Challenge构建,该系统可帮助用户完成多步骤烹饪和家庭装修任务。 Tacobot设计的是以用户为中心的原则,并渴望提供协作且易于访问的对话体验。为此,它具有准确的语言理解,灵活的对话管理和引人入胜的响应生成。此外,Tacobot还以强大的搜索引擎和自动化的端到端测试套件为支持。在引导Tacobot的开发中,我们探讨了一系列数据增强策略,以培训先进的神经语言处理模型,并通过收集的真实对话不断改善对话经验。在半决赛结束时,Tacobot的平均评分为3.55/5.0。

We present TacoBot, a task-oriented dialogue system built for the inaugural Alexa Prize TaskBot Challenge, which assists users in completing multi-step cooking and home improvement tasks. TacoBot is designed with a user-centered principle and aspires to deliver a collaborative and accessible dialogue experience. Towards that end, it is equipped with accurate language understanding, flexible dialogue management, and engaging response generation. Furthermore, TacoBot is backed by a strong search engine and an automated end-to-end test suite. In bootstrapping the development of TacoBot, we explore a series of data augmentation strategies to train advanced neural language processing models and continuously improve the dialogue experience with collected real conversations. At the end of the semifinals, TacoBot achieved an average rating of 3.55/5.0.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源