论文标题
富集的单调和品种的图表示威
Diagrammatic presentations of enriched monads and varieties for a subcategory of arities
论文作者
论文摘要
在经典作品之后,凯利(Kelly),权力(Power and Lav)开发了丰富的单调的演讲理论,并已被普遍适用于伯克·加纳(Bourke-Garner)和作者最近的作品中的Arities子类别。我们认为,尽管理论上优雅且在结构上是基本的,但这种丰富的单子的演示可能会直接在实践中直接构建,因为它们与通过操作和方程式构建许多丰富的代数结构的定义过程不直接匹配。 我们将上述演讲方法作为关键的技术基础,建立了一种灵活的形式主义,用于直接描述由$ v $ - 类别$ c $的对象在参数化$ j $ - j $ - y-armary操作和图表方程式的含义中,用于适当的Arities arities $ j \ jkingrightArrow c $。在此基础上,我们介绍了图形$ j $ - 表现和$ j $ - ary品种的概念,我们表明$ j $ - ary品种的类别双重等同于$ j $ -ary $ v $ v $ -monads的类别。我们建立了几个图形$ j $ presentations和$ j $ - ar的品种与数学和理论计算机科学相关的示例,我们定义了图解$ j $ presencentations的总和和张量产品。我们表明,$ j $依赖的单子和$ j $ - 预示剂都会引起图表$ j $ - 呈现,直接描述其代数。使用图表$ j $ - 示例作为一种证明方法,我们将伯克和Garner的Pretheories-MonAds相邻概括在本地呈现的环境之外。最后,我们将代数类别和方程组之间的Birkhoff的Galois连接推广到上述设置。
The theory of presentations of enriched monads was developed by Kelly, Power, and Lack, following classic work of Lawvere, and has been generalized to apply to subcategories of arities in recent work of Bourke-Garner and the authors. We argue that, while theoretically elegant and structurally fundamental, such presentations of enriched monads can be inconvenient to construct directly in practice, as they do not directly match the definitional procedures used in constructing many categories of enriched algebraic structures via operations and equations. Retaining the above approach to presentations as a key technical underpinning, we establish a flexible formalism for directly describing enriched algebraic structure borne by an object of a $V$-category $C$ in terms of parametrized $J$-ary operations and diagrammatic equations for a suitable subcategory of arities $J \hookrightarrow C$. On this basis we introduce the notions of diagrammatic $J$-presentation and $J$-ary variety, and we show that the category of $J$-ary varieties is dually equivalent to the category of $J$-ary $V$-monads. We establish several examples of diagrammatic $J$-presentations and $J$-ary varieties relevant in both mathematics and theoretical computer science, and we define the sum and tensor product of diagrammatic $J$-presentations. We show that both $J$-relative monads and $J$-pretheories give rise to diagrammatic $J$-presentations that directly describe their algebras. Using diagrammatic $J$-presentations as a method of proof, we generalize the pretheories-monads adjunction of Bourke and Garner beyond the locally presentable setting. Lastly, we generalize Birkhoff's Galois connection between classes of algebras and sets of equations to the above setting.