论文标题
Fisher-KPP方程的渐近一维对称性
Asymptotic one-dimensional symmetry for the Fisher-KPP equation
论文作者
论文摘要
令$ u $为Fisher-kpp方程的解决方案$$ \ partial_t u =ΔU+f(u),\ quad t> 0,\ x \ in \ mathbb {r}^n。 $$我们解决以下问题:$ u $是否成为$ t \ to+\ infty $的本地平面?也就是说,$ u(t_n,x_n+\ cdot)$ $在本地统一,直到子序列,朝着一维函数,对于任何序列$(((t_n,x_n))_ {n \ in \ mathbb {n}}} $ $ t_n \ to+\ infty $ as $ n \ to+\ infty $?这个问题本着de Giorgi的猜想,用于艾伦 - 卡纳方程的固定解决方案。答案取决于$ u $的初始基准$ u_0 $。众所周知,当$ u_0 $的支持是有限的,或者位于两个平行半空间之间时,它是肯定的。相反,当$ U_0 $的支持为“ V形”时,答案为负。我们在这里证明,当$ u_0 $的支撑是凸集(另外令人满意的内部球条件)时,或者更一般而言,当它在有限的Hausdorff距离距离集合时,$ u $是渐近的本地平面。实际上,我们根据$ u_0 $的支持,在更通用的几何假设下得出了结果。我们特别恢复了文献中已知的上述结果。我们进一步描述了$ u $在本地平面上渐近的指示集,我们表明渐近配置文件是单调的。当$ u_0 $的支持是具有消失的全局平均值的函数的子图时,我们的结果特别适用。
Let $u$ be a solution of the Fisher-KPP equation $$ \partial_t u=Δu+f(u),\quad t>0,\ x\in\mathbb{R}^N. $$ We address the following question: does $u$ become locally planar as $t\to+\infty$ ? Namely, does $u(t_n,x_n+\cdot)$ converge locally uniformly, up to subsequences, towards a one-dimensional function, for any sequence $((t_n,x_n))_{n\in\mathbb{N}}$ in $(0,+\infty)\times\mathbb{R}^N$ such that $t_n\to+\infty$ as $n\to+\infty$ ? This question is in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. The answer depends on the initial datum $u_0$ of $u$. It is known to be affirmative when the support of $u_0$ is bounded or when it lies between two parallel half-spaces. Instead, the answer is negative when the support of $u_0$ is "V-shaped". We prove here that $u$ is asymptotically locally planar when the support of $u_0$ is a convex set (satisfying in addition a uniform interior ball condition), or, more generally, when it is at finite Hausdorff distance from a convex set. We actually derive the result under an even more general geometric hypothesis on the support of $u_0$. We recover in particular the aforementioned results known in the literature. We further characterize the set of directions in which $u$ is asymptotically locally planar, and we show that the asymptotic profiles are monotone. Our results apply in particular when the support of $u_0$ is the subgraph of a function with vanishing global mean.