论文标题

在某些McKay数量的对称组中

On Certain McKay Numbers of Symmetric Groups

论文作者

Hoganson, Annemily G., Jaklitsch, Thomas

论文摘要

对于Primes $ \ ell $和非负整数$ a $,我们研究分区函数$$ p_ \ ell(a; n):= \#\ {λ\ vdash n:\ text {ord} _ \ ell(h(λ)= a \},$ h(up)$ h(λ)$ DENITION $ deNITION $ n.这些分区值是在对称组的表示理论中,以麦凯数字$ m_ \ ell(\ text {ord} _ \ ell(n!) - a; s_n)$。我们确定$ p_ \ ell(a; n)$的生成函数在$ p_ \ ell(0; n)$方面和特定d'Arcais多项式的专业化。对于$ \ ell = 2 $和$ 3 $,我们给出了$ p_ \ ell(a; n)$的确切公式,并证明这些值几乎对所有$ n $均为零。对于较大的Primes $ \ ell $,$ p_ \ ell(a; n)$对于足够大的$ n $是阳性。尽管存在这种积极性,但我们证明$ p_ \ ell(a; n)$几乎总是可以用$ m $除整体$ m $。此外,通过这些结果,我们证明了几个Ramanujan型的一致性。这些包括一致性$$ p_ \ ell(a; \ ell^k n -δ(a,\ ell))\ equiv 0 \ pmod {\ ell^{k + 1}},$$ $ 0 for $ 0 <a <a <\ ell $,$ \ ell $ \ ell = 5,7,7,7,7,7,11 $ and $ eell) Ono。

For primes $\ell$ and nonnegative integers $a$, we study the partition functions $$p_\ell(a;n):= \#\{λ\vdash n : \text{ord}_\ell(H(λ))=a\},$$ where $H(λ)$ denotes the product of hook lengths of a partition $λ$. These partition values arise as the McKay numbers $m_\ell(\text{ord}_\ell(n!) - a; S_n)$ in the representation theory of the symmetric group. We determine the generating functions for $p_\ell(a;n)$ in terms of $p_\ell(0;n)$ and specializations of specific D'Arcais polynomials. For $\ell = 2$ and $3$, we give an exact formula for the $p_\ell(a;n)$ and prove that these values are zero for almost all $n$. For larger primes $\ell$, the $p_\ell(a;n)$ are positive for sufficiently large $n$. Despite this positivity, we prove that $p_\ell(a;n)$ is almost always divisible by $m$ for any integer $m$. Furthermore, with these results we prove several Ramanujan-type congruences. These include the congruences $$p_\ell(a;\ell^k n - δ(a,\ell)) \equiv 0 \pmod{\ell^{k+1}},$$ for $0<a< \ell$, where $\ell = 5, 7, 11$ and $δ(a,\ell) := (\ell^2 - 1)/24 + a\ell$, which answer a question of Ono.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源