论文标题
分解陈述
Factorization presentations
论文作者
论文摘要
顶点操作员代数V上的模块会产生稳定尖曲线模量上的共线束。如果V满足有限性和半动度条件,则这些或骨是矢量束。这取决于分解,这是在曲线归一化的节点曲线上共同变体空间的同构。在这里,我们介绍了分解呈现的概念,使用此概念,我们表明V上的有限条件暗示着共同变体的束带在尖稳定曲线的模量空间上是一致的,而没有任何半多余的假设。
Modules over a vertex operator algebra V give rise to sheaves of coinvariants on moduli of stable pointed curves. If V satisfies finiteness and semi-simplicity conditions, these sheaves are vector bundles. This relies on factorization, an isomorphism of spaces of coinvariants at a nodal curve with a finite sum of analogous spaces on the normalization of the curve. Here we introduce the notion of a factorization presentation, and using this, we show that finiteness conditions on V imply the sheaves of coinvariants are coherent on moduli spaces of pointed stable curves without any assumption of semisimplicity.