论文标题
引导Lieb-Schultz-Mattis异常
Bootstrapping Lieb-Schultz-Mattis anomalies
论文作者
论文摘要
我们结合了导致Lieb-Schultz-Mattis(LSM)定理的一维自旋链链的微观假设,成为保形性引导链。我们的方法解释了这些自旋链通过模块化引导和对称缺陷算子的相关引导程序的组合所拥有的“ LSM异常”。因此,我们在(1+1)$ d $共形的场理论(CFTS)的本地操作员内容上获得了通用界限,这些理论(CFTS)可以用$ \ Mathbb Z_N \ times \ times \ Mathbb z_n $ Symmetry在每个站点实现了项目。我们在本地运营商的全球对称表示方面介绍了本地运营商的界限。有趣的是,当$ n $奇怪时,我们可以在带电的运营商上获得非平凡的界限,仅靠模块化的自举就不可能。我们的边界表现出独特的扭结,其中一些差异近似于已知的理论和其他无法解释的理论。我们讨论了我们的边界应用所需的属性,包括(1+1)$ d $对称性受保护的拓扑阶段之间的某些多个智力点,我们认为我们的自举计算中研究的异常应该会出现。
We incorporate the microscopic assumptions that lead to a certain generalization of the Lieb-Schultz-Mattis (LSM) theorem for one-dimensional spin chains into the conformal bootstrap. Our approach accounts for the "LSM anomaly" possessed by these spin chains through a combination of modular bootstrap and correlator bootstrap of symmetry defect operators. We thus obtain universal bounds on the local operator content of (1+1)$d$ conformal field theories (CFTs) that could describe translationally invariant lattice Hamiltonians with a $\mathbb Z_N\times \mathbb Z_N$ symmetry realized projectively at each site. We present bounds on local operators both with and without refinement by their global symmetry representations. Interestingly, we can obtain non-trivial bounds on charged operators when $N$ is odd, which turns out to be impossible with modular bootstrap alone. Our bounds exhibit distinctive kinks, some of which are approximately saturated by known theories and others that are unexplained. We discuss additional scenarios with the properties necessary for our bounds to apply, including certain multicritical points between (1+1)$d$ symmetry protected topological phases, where we argue that the anomaly studied in our bootstrap calculations should emerge.