论文标题
平行的贝叶斯优化基于代理的运输模拟
Parallel Bayesian Optimization of Agent-based Transportation Simulation
论文作者
论文摘要
Matsim(多机构运输模拟工具包)是一个开源大规模的基于代理的运输计划项目,该项目适用于公路运输,公共交通,货运,货运,区域疏散等各个领域。光束(行为,能源,能源,自主权和移动性)框架扩展了MATSIM,可扩展MATSIM,以实现对Urban Transportation Systems的强大而可扩展的分析。基于多项式logit模型的梁模拟的代理展示了“模式选择”行为。在我们的研究中,我们考虑八种模式选择。自行车,汽车,步行,骑行冰雹,开车去运输,步行到运输,乘坐冰雹到运输和乘坐冰雹池。每个模式选择的“替代特定常数”是与在实验下的特定方案有关的配置文件中的关键超参数。我们为我们的所有实验使用“ Urbansim-10k”光束方案(具有10,000个人口大小)。由于这些超参数以复杂的方式影响模拟,因此手动校准方法耗时。我们提出了一种平行的贝叶斯优化方法,该方法具有早期停止规则,以实现给定的多中期问题的快速收敛,以达到其最佳配置。我们的模型基于开源HPBandster软件包。这种方法结合了几个一维内核密度估计器(KDE)的层次结构和廉价的评估器(超频带,单个多维KDE)。我们的模型还纳入了基于外推的早期停止规则。借助我们的模型,我们可以以完全自主的方式实现大规模梁模拟的25%L1规范。据我们所知,我们的工作是大规模多机构运输模拟的第一项工作。这项工作对于众多人群的场景的替代建模可能很有用。
MATSim (Multi-Agent Transport Simulation Toolkit) is an open source large-scale agent-based transportation planning project applied to various areas like road transport, public transport, freight transport, regional evacuation, etc. BEAM (Behavior, Energy, Autonomy, and Mobility) framework extends MATSim to enable powerful and scalable analysis of urban transportation systems. The agents from the BEAM simulation exhibit 'mode choice' behavior based on multinomial logit model. In our study, we consider eight mode choices viz. bike, car, walk, ride hail, driving to transit, walking to transit, ride hail to transit, and ride hail pooling. The 'alternative specific constants' for each mode choice are critical hyperparameters in a configuration file related to a particular scenario under experimentation. We use the 'Urbansim-10k' BEAM scenario (with 10,000 population size) for all our experiments. Since these hyperparameters affect the simulation in complex ways, manual calibration methods are time consuming. We present a parallel Bayesian optimization method with early stopping rule to achieve fast convergence for the given multi-in-multi-out problem to its optimal configurations. Our model is based on an open source HpBandSter package. This approach combines hierarchy of several 1D Kernel Density Estimators (KDE) with a cheap evaluator (Hyperband, a single multidimensional KDE). Our model has also incorporated extrapolation based early stopping rule. With our model, we could achieve a 25% L1 norm for a large-scale BEAM simulation in fully autonomous manner. To the best of our knowledge, our work is the first of its kind applied to large-scale multi-agent transportation simulations. This work can be useful for surrogate modeling of scenarios with very large populations.