论文标题
部分可观测时空混沌系统的无模型预测
A RANS approach to the Meshless Computation of Pressure Fields From Image Velocimetry
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a 3D meshless method to compute mean pressure fields in turbulent flows from image velocimetry. The method is an extension of the constrained Radial Basis Function (RBF) formulation by \citet{Sperotto2022} to a Reynolds Averaged Navier Stokes (RANS) framework. This is designed to handle both scattered data as in Particle Tracking Velocimetry (PTV) and data in uniform grids as in correlation-based Particle Image Velocimetry (PIV). The RANS extension includes the Reynolds stresses into the constrained least square problem. We test the approach on a numerical database featuring a Backward Facing Step (BFS) with a Reynolds number of 6400 (defined with respect to the inlet velocity and step height), obtained via Direct Numerical Simulation (DNS).