论文标题

部分可观测时空混沌系统的无模型预测

Biaxial growth of pentacene on rippled silica surfaces studied by rotating grazing incidence X-ray diffraction

论文作者

Pachmajer, Stefan, Werzer, Oliver, Mennucci, Carlo, de Mongeot, Francesco Buatier, Resel, R.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Pentacene is known to grow on isotropic silicon oxide surfaces in a substrate-induced phase with fiber textured crystallites. This growth study reports on the growth of pentacene crystallites on uniaxially oriented surfaces. Silica substrates have been treated by ion beam sputtering so that ripples with a lateral corrugation length of 38 nm and a surface roughness of 1.3 nm are formed. Pentacene thin films with a nominal thickness in the range from 20 nm up to 300 nm are deposited on top of the rippled surfaces. The films are characterized by atomic force microscopy and grazing incidence X-ray diffraction. Bi-axially oriented crystals are formed due to the grooves of the substrate surface opening up the possibility of a defined in-plane alignment of the crystals. In a first stage of thin film growth, the thin film phase (TFP) of pentacene is formed, while in the later stage the bulk crystal structure (C, Campbell phase) also appears. Due to the bi-axial alignment of the crystallites the transition from the thin film phase to the bulk crystal structure can be directly investigated. An epitaxial relationship with (120)TFP || (210)C and [-210]TFP || [1-20]C is observed which can be explained by an adaption of the herringbone layers of both crystal structures. This work reveals one possible microscopic mechanism for the transition from the metastable substrate-induced phase of pentacene to its equilibrium bulk structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源