论文标题
部分可观测时空混沌系统的无模型预测
Classification and Generation of real-world data with an Associative Memory Model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Drawing from memory the face of a friend you have not seen in years is a difficult task. However, if you happen to cross paths, you would easily recognize each other. The biological memory is equipped with an impressive compression algorithm that can store the essential, and then infer the details to match perception. The Willshaw Memory is a simple abstract model for cortical computations which implements mechanisms of biological memories. Using our recently proposed sparse coding prescription for visual patterns, this model can store and retrieve an impressive amount of real-world data in a fault-tolerant manner. In this paper, we extend the capabilities of the basic Associative Memory Model by using a Multiple-Modality framework. In this setting, the memory stores several modalities (e.g., visual, or textual) of each pattern simultaneously. After training, the memory can be used to infer missing modalities when just a subset is perceived. Using a simple encoder-memory-decoder architecture, and a newly proposed iterative retrieval algorithm for the Willshaw Model, we perform experiments on the MNIST dataset. By storing both the images and labels as modalities, a single Memory can be used not only to retrieve and complete patterns but also to classify and generate new ones. We further discuss how this model could be used for other learning tasks, thus serving as a biologically-inspired framework for learning.