论文标题
部分可观测时空混沌系统的无模型预测
Rapid Stabilization of Timoshenko Beam by PDE Backstepping
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we present a rapid boundary stabilization of a Timoshenko beam with anti-damping and anti-stiffness at the uncontrolled boundary, by using PDE backstepping. We introduce a transformation to map the Timoshenko beam states into a (2+2) x (2+2) hyperbolic PIDE-ODE system. Then backstepping is applied to obtain a control law guaranteeing closed-loop stability of the origin in the H^1 sense. Arbitrarily rapid stabilization can be achieved by adjusting control parameters. Finally, a numerical simulation shows that the proposed controller can rapidly stabilize the Timoshenko beam. This result extends a previous work which considered a slender Timoshenko beam with Kelvin-Voigt damping, allowing destabilizing boundary conditions at the uncontrolled boundary and attaining an arbitrarily rapid convergence rate.