论文标题

多模式车辆轨迹预测的分层潜在结构

Hierarchical Latent Structure for Multi-Modal Vehicle Trajectory Forecasting

论文作者

Choi, Dooseop, Min, KyoungWook

论文摘要

各种自动编码器(VAE)已被广泛用于建模数据分布,因为它在理论上优雅,易于训练并且具有不错的多种形式表示。但是,当应用于图像重建和合成任务时,VAE显示了生成样品往往模糊的局限性。我们观察到一个类似的问题,其中生成的轨迹位于相邻车道之间,通常是在基于VAE的轨迹预测模型中出现的。为了减轻此问题,我们将分层潜在结构引入基于VAE的预测模型。基于以下假设:轨迹分布可以作为简单分布(或模式)的混合物近似,因此使用低级潜在变量来对混合物的每种模式进行建模,并且使用高级潜在变量来表示模式的权重。为了准确地对每个模式进行建模,我们使用以新颖方式计算的两个车道级别上下文向量来调节低级潜在变量,一种对应于车道相互作用,另一个对应于车辆车辆的相互作用。上下文向量还用于通过建议的模式选择网络对权重进行建模。为了评估我们的预测模型,我们使用两个大型现实世界数据集。实验结果表明,我们的模型不仅能够生成清晰的多模式轨迹分布,而且还可以优于最新模型(SOTA)模型,以预测准确性。我们的代码可在https://github.com/d1024choi/hlstrajforecast上找到。

Variational autoencoder (VAE) has widely been utilized for modeling data distributions because it is theoretically elegant, easy to train, and has nice manifold representations. However, when applied to image reconstruction and synthesis tasks, VAE shows the limitation that the generated sample tends to be blurry. We observe that a similar problem, in which the generated trajectory is located between adjacent lanes, often arises in VAE-based trajectory forecasting models. To mitigate this problem, we introduce a hierarchical latent structure into the VAE-based forecasting model. Based on the assumption that the trajectory distribution can be approximated as a mixture of simple distributions (or modes), the low-level latent variable is employed to model each mode of the mixture and the high-level latent variable is employed to represent the weights for the modes. To model each mode accurately, we condition the low-level latent variable using two lane-level context vectors computed in novel ways, one corresponds to vehicle-lane interaction and the other to vehicle-vehicle interaction. The context vectors are also used to model the weights via the proposed mode selection network. To evaluate our forecasting model, we use two large-scale real-world datasets. Experimental results show that our model is not only capable of generating clear multi-modal trajectory distributions but also outperforms the state-of-the-art (SOTA) models in terms of prediction accuracy. Our code is available at https://github.com/d1024choi/HLSTrajForecast.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源