论文标题
脑意识替代了监督对比度学习时在检测阿尔茨海默氏病时
Brain-Aware Replacements for Supervised Contrastive Learning in Detection of Alzheimer's Disease
论文作者
论文摘要
我们提出了一个使用脑MRI的阿尔茨海默氏病(AD)检测的新框架。该框架从称为脑感知替代品(BAR)的数据增强方法开始,该方法利用标准的脑部分割来替代与随机挑选的MRI的锚固MRI中的医学相关的3D脑区域,以创建合成样品。地面真相“硬”标签也根据替换比的不同,以创建“软”标签。与其他基于混合的方法(例如CutMix)相比,BAR可产生各种各样的逼真的合成MRI,具有较高局部变异性。在酒吧之上,我们建议使用具有软标签能力的监督对比损失,旨在了解表示形式的相对相似性,这些相似性反映了使用我们的软标签的合成MRI的混合方式。这样,我们就不会充分耗尽硬标签的熵能力,因为我们只使用它们来通过bar创建软标签和合成MRI。我们表明,使用我们的框架进行预训练的模型可以通过使用用于创建合成样品的硬质标签进行跨凝结损失进行微调。我们在二进制广告检测任务中验证了框架的性能,以与从划伤的监督培训和最先进的自我监督培训以及微调方法进行验证。然后,我们通过将BAR与另一个基于混合的方法CutMix进行集成在我们的框架中相比,评估了BAR的个人性能。我们表明,我们的框架在AD检测任务的精确度和回忆中都产生了较高的结果。
We propose a novel framework for Alzheimer's disease (AD) detection using brain MRIs. The framework starts with a data augmentation method called Brain-Aware Replacements (BAR), which leverages a standard brain parcellation to replace medically-relevant 3D brain regions in an anchor MRI from a randomly picked MRI to create synthetic samples. Ground truth "hard" labels are also linearly mixed depending on the replacement ratio in order to create "soft" labels. BAR produces a great variety of realistic-looking synthetic MRIs with higher local variability compared to other mix-based methods, such as CutMix. On top of BAR, we propose using a soft-label-capable supervised contrastive loss, aiming to learn the relative similarity of representations that reflect how mixed are the synthetic MRIs using our soft labels. This way, we do not fully exhaust the entropic capacity of our hard labels, since we only use them to create soft labels and synthetic MRIs through BAR. We show that a model pre-trained using our framework can be further fine-tuned with a cross-entropy loss using the hard labels that were used to create the synthetic samples. We validated the performance of our framework in a binary AD detection task against both from-scratch supervised training and state-of-the-art self-supervised training plus fine-tuning approaches. Then we evaluated BAR's individual performance compared to another mix-based method CutMix by integrating it within our framework. We show that our framework yields superior results in both precision and recall for the AD detection task.